1. (a) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{6} 4 s^{2} / 4 s^{2} 3 d^{6} O R 3 d^{8}\left(4 s^{0}\right)(\mathbf{1})$ Incomplete d shell (in the ion) (1)
(b) (i) $\mathrm{Ni}(\mathrm{CO})_{4}$

1
(ii) 0 1
(c) (i) $\quad \mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}(\mathrm{aq})+\mathrm{NH}_{3}(\mathrm{aq}) \rightarrow \mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\left(\mathrm{NH}_{3}\right)^{2+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

QWC* (ii) $\Delta \mathrm{S}$ is likely to be small / close to zero (1) - No TE
Same number of moles/molecules/particles in the same states on both sides of the equation (1)
(d) (i) $\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{Ag}^{(+)} \mathrm{Cl}^{(-)}($s $)$
(ii) 1 mole of AgCl has a mass of $143.5 /(108+35.5)$ (1)

OR 143.3 from Data Book (or 143.4)
Number of moles of $\mathrm{AgCl}=6.133 / 143.5=0.0427$ (4) 0.04280 (1)
Number of moles of complex $=0.04274 / 2=0.02137$
Therefore mass of 1 mole $=5.000 / 0.02137=234 / 234.4$ (1)
3SF sufficient but not 2SF
(iii) $59+18 \times x+17 \times(6-x)+71=234$
$232+x=234$

$$
x=2
$$

$\left(\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Cl}_{2}\right)$ Formula NOT needed for mark
(iv) The two water molecules could be at 180° or 90° to one another

Octahedral structure (1)
ALLOW the word octahedral to explain diagram's shape
2. (a) (i) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1} 3 d^{5}$

OR
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{5} 4 s^{1}$
QWC*(ii) V and Mn have two 4s electrons / filled 4s (orbital) Cr has one (1) due to stability of half-filled shell/4s and 3d levels have similar energies (1)
QWC*(b) $\quad \mathrm{Cr}^{3+}(\mathrm{aq}), \mathrm{Cr}^{2+}(\mathrm{aq})(\mathrm{IPt})-0.41(\mathrm{~V})(1)$
$\left[\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right], 4 \mathrm{OH}^{-}(\mathrm{aq})(\mathrm{IPt})+0.4(0)(\mathrm{V})(\mathbf{1})$
ALLOW a state symbol omission in each.
ALLOW half equations
Can be given in a cell diagram
by application of the anti-clockwise rule oxygen will oxidise Cr^{2+}
OR
E^{0} cell $=(+) 0.81(\mathrm{~V})$ and this is greater than $(+) 0.6(\mathrm{~V})$
OR
Cr^{2+} has more negative electrode potential so will reduce oxygen /
oxygen more positive etc. (1)
QWC*(c) (i) Water acts as a ligand by a non-bonding pair (of electrons on the oxygen atom) (1) Making a dative (covalent)/co-ordinate bond (to the chromium ion) (1) 2
(ii) Bidentate/chelate/bridging 1
QWC*(iii) Two peaks in the NMR spectrum (1)Due to two different environments of hydrogen atoms /H in $\mathrm{H}_{2} \mathrm{O}$ and H in CH_{3} (1)
Mark independently 2
QWC*(iv) Any two:
C-H just below 3000 / 2962-2853 / 1485-1365
O-H 3200-3800
C=O 1700-1750
C-O 1230-1250
ALLOW values or ranges within these rangesIf more than two given, -1 for each incorrect2
(d) (i) $3 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ to $3 \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ provided $1 \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ (1)$4 \mathrm{H}_{2} \mathrm{SO}_{4}$ and $7 \mathrm{H}_{2} \mathrm{O}$ (1)
ACCEPT multiples 2
(ii) Orange to greenALLOW qualified green e.g. blue-greenNOT green to orange1
(iii) (Sodium dichromate(VI)) is a carcinogen / toxic / irritantIn any combination
Lose mark for anything else with these. 1
3. (a) (i) Add silver nitrate (solution) (1) ACCEPT correct formula (pale) yellow precipitate/solid(1)

OR
Add chlorine (solution)/bromine (solution) and hydrocarbon solvent (1) Solvent goes purple/pink/violet (1)
$2^{\text {nd }}$ mark is dependent on $1^{\text {st }}$
(ii) Iodine $/ \mathrm{I}$ and sulphur / S identified (1) $-\mathrm{NOT}_{2} / \mathrm{I}^{-} /$iodide Iodine initial (+)5 final -1 (1)
Sulphur
initial (+)4 final (+)6 (1)
ACCEPT as roman numerals
ACCEPT +/- on either side/sub or superscript
ACCEPT as words
(iii) $1 \times-6=-6, \quad 3 \times+2=+6 \quad$ ALLOW TE from (ii)

OR total change in oxidation number of +6 for $\mathrm{S},-6$ for I
ACCEPT justification in terms of electrons
(b) (i) pipette

ALLOW burette
NOT measuring cylinder
(ii) Starch (solution) (1)
blue/dark blue/blue-black/black to colourless (1)
ALLOW max 1 if candidate states "no indicator needed/self-indicating" with colour change brown/yellow to colourless
If no indicator given but correct colour change $\mathbf{1}$ (out of 2)
(iii) $\frac{24.0}{1000} \times 2.4(0) \times 10^{-4} \quad$ OR $0.00024(\mathrm{~mol})$

The mark is for the answer
(iv) $\frac{2.40 \times 10^{-4}}{2}=1.2(0) \times 10^{-4}(\mathrm{~mol})$ OR $0.00012(\mathrm{~mol})$

ALLOW TE from (iii)
The mark is for the answer
(v) $1.2 \times 10^{-4} \times 100=0.012(0)\left(\mathrm{mol} \mathrm{dm}^{-3}\right)$

ALLOW TE from (iv)
The mark is for the answer 1
4. (i) (Buchner) flask / boiling tube connected to pump, glass tube through stopper into solution
eg

ACCEPT

But must be a test tube and tube to bottom as shown
(ii) $8 \mathrm{H}^{+} \quad 4 \mathrm{H}_{2} \mathrm{O}$

ACCEPT multiples
(iii) Number of moles of manganate(VII) ion
$=\frac{20 \times 0.020}{1000}=0.0004(0)(\mathbf{1})$
Number of moles of electrons
$=5 \times 0.00040=0.002(0)(\mathbf{1})$
Number of moles of vanadium ions
$=\frac{10 \times 0.10}{1000}=0.001(\mathbf{1})$
(as vanadium (V) is formed by loss of 2 moles of electrons)
Oxidation number of vanadium in aerated solution is +3 (1)
(iv) It is a powerful oxidising agent, $E^{\ominus}=+1.51 \mathrm{~V}$

OR
It is self-indicating 1
5. (a) (i) uses E^{θ} values to find $E_{\text {reaction }}=(+) 1.57$ (V) (1)

$$
\text { Reject - } 1.57
$$

$$
\mathrm{Zn}+2 \mathrm{NO}_{3}^{-}+4 \mathrm{H}^{+} \rightarrow \mathrm{Zn}^{2+}+2 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O}(\mathbf{1})
$$

Accept equation with equilibrium sign
Rejection equation with Zn on the right
(ii) $\quad E_{\text {reaction }}$ for the production of hydrogen is (+) $0.76(\mathrm{~V})(\mathbf{1})$ smaller than reaction in (i) so is less likely (1)

OR
$\mathrm{NO}_{3}{ }^{-}$being the oxidised form of a redox couple with a more positive E^{θ} than $\mathrm{E}^{\theta} \mathrm{H}^{+} / 1 / 2 \mathrm{H}_{2}$ (1)
is a stronger oxidising agent than $\mathrm{H}^{+}(\mathbf{1})$
(iii) hexaaquacopper(II) (1)

OR

Both marks stand alone
[IGNORE charge]
[IGNORE how $\mathrm{H}_{2} \mathrm{O}$ ligand is bonded to central cation]
Accept hexaquacopper(II)
Reject formula
(iv) ligand exchange/replacement/substitution (1)
$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{Cl}^{-} \rightleftharpoons \mathrm{CuCl}_{4}{ }^{2-}+6 \mathrm{H}_{2} \mathrm{O}(\mathbf{1})$
OR
$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{HCl} \rightleftharpoons \mathrm{CuCl}_{4}{ }^{2-}+4 \mathrm{H}^{+}+6 \mathrm{H}_{2} \mathrm{O}$ (1)
ALLOW \rightarrow
Accept $\mathrm{H}_{2} \mathrm{CuCl}_{4}+2 \mathrm{H}^{+}$for $\mathrm{CuCl}_{4}{ }^{2-}+4 \mathrm{H}^{+}$
(b) (i) $\quad E^{\theta}$ for the reaction is $-0.39(\mathrm{~V})$ (so not feasible) [value is required].

Accept Cu^{2+} being the oxidised form of the redox couple with the more negative E^{θ}, will not oxidise Γ
(ii) CuI is a solid (so conditions are not standard) (1)

Equilibrium is pulled over/moves to favour the r.h.s. (1)
Reject just 'conditions not standard'
(iii) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{+}$

OR $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{+}$
Accept $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$
Reject $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{6}\right]^{+}$
Reject any 2+ complex
(iv) (atmospheric) oxygen (1)
oxidises Cu^{+}to Cu^{2+} (1)
Reject air for oxygen
(c) (i) starch (1)
blue-black/blue/black to colourless (1) 2
Reject clear for colourless
(ii) (If added too early) insoluble complex/black solid formed, making titre too low

OR (If added too early) insoluble complex/black solid formed, removes iodine from solution
OR (If added too early) insoluble complex/black solid formed, causes inaccurate titre.
OR (If added too early) insoluble complex/black solid formed, not all the iodine is titrated.
(iii) Amount thiosulphate $=0.01655 \mathrm{dm}^{3} \times 0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ (1)
$=$ amount Cu^{2+} in $25.0 \mathrm{~cm}^{3}=1.655 \times 10^{-3} \mathrm{~mol}(\mathbf{1})$
amount of Cu^{2+} in $250 \mathrm{~cm}^{3}=1.655 \times 10^{-3} \times 10$ (1)
mass of Cu (in sample) $=1.655 \times 10^{-2} \times 63.5 \mathbf{(1)}=1.051 \mathrm{~g}$
$\% \mathrm{Cu}$ in brass $=1.051 \times 100 / 1.5=70 \%(\mathbf{1})$
[IGNORE sf]
[mass of 1.051 g with working scores (4); correct answer with no working scores (3).] Mark consequentially
6. (a) $3 d^{10} 4 s^{1}$ and $3 d^{10}$

Accept $4 s^{1} 3 d^{10}$
(b) (i) QWC*
the (3)d sub-shell is full (1)
Accept orbitals (it must be plural) for sub-shell
Reject comments on partially filled sub-shell
so no d-d transitions are possible
OR no transitions in the right energy range are possible (1)
(and no light is absorbed)
Any mention of light emission loses $2^{\text {nd }}$ mark
(ii) combine the half-reactions to get $2 \mathrm{Cu}^{+} \rightarrow \mathrm{Cu}^{2+}+\mathrm{Cu}$ (1)

IGNORE state symbols
and show that E^{\ominus} for this is $(+) 0.37(\mathrm{~V})$ (and as it is positive it is
feasible) (1)
conditional on correct reaction
Reject just '> 0.3 (V)'
(iii) activation energy (for the disproportionation) is high

OR
Cu^{+}is kinetically stable
Reject activation energy for one of the half-equations is too high
(c) (i) divides each by atomic mass (1)
divides by smallest to obtain $\mathrm{Cu}_{2} \mathrm{SO}_{6} \mathrm{H}_{2}(\mathbf{1})$
Division by atomic number scores zero
(ii) $\mathrm{CuSO}_{4} \cdot \mathrm{Cu}(\mathrm{OH})_{2}$ (2)

If formula wrong but sulphate/ SO4 is present scores 1 (out of 2)
Accept $\mathrm{Cu}_{2} \mathrm{SO}_{4}(\mathrm{OH})_{2}$
Accept $\mathrm{Cu}_{2}(\mathrm{OH})_{2} \mathrm{SO}_{4}$
Accept $(\mathrm{CuOH})_{2} \mathrm{SO}_{4}$
Reject HSO_{4} instead of SO_{4}
(iii) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$

Accept $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
Reject $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
(iv) ligand exchange / ligand substitution
(d) (i) QWC
(add aldehyde to 2,4-DNP) to obtain precipitate/ppt/solid/crystals (1) recrystallise derivative (1)
determine melting temperature of derivative (1)
compare with data tables (1) 4th mark conditional on melting temperature of a derivative being measured

Reject any identification method based on IR, NMR or mass for last 2 marks
(ii) the aldehyde is distilled off as it is formed

Reject any mention of reflux
Reject just 'the aldehyde is distilled off'
(iii) propanoic acid OR CH $\mathrm{CH}_{2} \mathrm{COOH}$ OR $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$

Accept $\mathrm{C}_{2} \mathrm{H}_{5}$ for $\mathrm{CH}_{3} \mathrm{CH}_{2}$
(iv) No (extra) oxygen present

OR catalyst specific to formation of aldehyde / only lowers E_{a} of first oxidation
OR presence of hydrogen gives reducing conditions
OR copper is not an oxidising agent
OR aldehydes rapidly leave catalyst surface
(v) (At high pressure) all active sites are occupied/full

OR
(At higher pressures) rate controlled by availability of sites.
Accept reverse argument for low pressure
7. (a) (i) $\mathrm{Cr}:[\mathrm{Ar}] 3 d^{5} 4 s^{1}$

Cu : Ar$] 3 d^{10} 4 s^{1}$
Both needed for the mark
1
Accept $4 s^{1} 3 d^{5}$
Accept $4 s^{1} 3 d^{10}$
Accept [Ar] written in full
(ii) all the others are $4 \mathrm{~s}^{2} /$ have full 4 s orbital (1)

Accept Cr and Cu/they do not have a full 4s orbital
Reject just 'only have one electron in 4 s'
OR
Have incomplete 4s orbital
The d subshell is more stable when either half or fully filled OR
A specific example of chromium having half-filled or copper having filled d sub-shell/set of d orbitals which is more stable (1)

Accept sub-energy levels d shell
Reject half-filled or filled d orbital(s)
(b) (i) Octahedral drawn must be 3-D

IGNORE any or no charge
Accept $-\mathrm{H}_{2} \mathrm{O}$ (bond to H) except on water molecules on left of Cr
(ii) Dative bond formed from electron pair/lone pair on oxygen (of the water molecule) to the ion

This could be shown on a diagram
Accept a clear description of the dative bond
Reject 'dative' alone or from water
Reject just "dative bond formed from oxygen"
(iii) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+\mathrm{OH}^{-} \rightarrow\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}\right]^{2+}+\mathrm{H}_{2} \mathrm{O}$

OR
$\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+2 \mathrm{OH}^{-} \rightarrow\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right]^{+}+2 \mathrm{H}_{2} \mathrm{O}$
OR
$\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{OH}^{-} \rightarrow \mathrm{Cr}(\mathrm{OH})_{3}+6 \mathrm{H}_{2} \mathrm{O}$
OR
$\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{OH}^{-} \rightarrow\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}\right]+3 \mathrm{H}_{2} \mathrm{O}$
First mark is for the correct Cr product
Second mark is conditional on the first and is for the rest of the equation correct and balanced
(iv) Forms a green precipitate (1)

IGNORE initial colour of solution
(which reacts or dissolves or changes to)
a green solution (with excess reagent) (1)
Accept any shade of green
$2^{\text {nd }}$ mark is conditional on an initial ppt
(v) acid / acidic

Accept amphoteric/able to be deprotonated
Reject coloured ions/ligand exchange/ deprotonation /partially filled d orbitals
(c) (i) Check working - correct answer can be obtained by not dividing by 2 for $2^{\text {nd }}$ mark and not multiplying by 2 for $4^{\text {th }}$ mark amount thiosulphate in titre $=0.0372 \mathrm{dm}^{3} \times 0.100 \mathrm{~mol} \mathrm{dm}^{-3}$
$=3.72 \times 10^{-3} \mathrm{~mol}(\mathbf{1})$
amount $\mathrm{I}_{2}=\frac{3.72 \times 10^{-3}}{2}(\mathbf{1})=1.86 \times 10^{-3} \mathrm{~mol}$
$2^{\text {nd }}$ mark cq on amount thiosulphate
amount dichromate in $25 \mathrm{~cm}^{3}$
$=\frac{1.86 \times 10^{3}}{3} \mathbf{(1)}=6.2 \times 10^{-4} \mathrm{~mol}$
$3^{\text {rd }}$ mark cq on amount I_{2}
Total mass $\mathrm{Cr}=6.2 \times 10^{-4} \mathrm{~mol} \times 2 \times 10 \times 52 \mathrm{~g} \mathrm{~mol}^{-1}(\mathbf{1})$
$=0.645 \mathrm{~g}$
$4^{\text {th }}$ mark cq on amount dichromate
\% of $\mathrm{Cr}=64.5$ \% (1)
IGNORE SF unless rounded to 1 SF cq on mass Cr , provided less than 1 g

OR
amount thiosulphate for whole sample
$=0.0372 \mathrm{dm}^{3} \times 0.100 \mathrm{~mol} \mathrm{dm}^{-3} \times 10$
$=3.72 \times 10^{-2} \mathrm{~mol}(\mathbf{1})$
amount $\mathrm{I}_{2}=1.86 \times 10^{-2} \mathrm{~mol}$ (1)
amount dichromate $=6.2 \times 10^{-3} \mathrm{~mol}(\mathbf{1})$
mass $\mathrm{Cr}=6.2 \times 10^{-3} \mathrm{~mol} \times 2 \times 52 \mathrm{~g} \mathrm{~mol}^{-1}(\mathbf{1})$
$=0.645 \mathrm{~g}$
\% of $\mathrm{Cr}=64.5 \%$ (1)
IGNORE SF unless rounded to 1 sf Mark consequentially, as above

Note:

Correct answer with no working (3)
(ii) Colour at the end point would be green which would prevent the loss of iodine colour being seen
OR
colour change at end point would be disguised by the colour of Cr^{3+}
Accept chromium instead of Cr^{3+}
Reject end point disguised by colour of $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-} /$ orange
8. (a) B 1
(b) C 1
9. C
10. D
11. D
12. (a) (i) $\mathrm{Fe}[\mathrm{Ar}] 3 \mathrm{~d}^{6} 4 \mathrm{~s}^{2}$ in either order, allowing superscripts to be subscripts $\mathrm{Fe}[\mathrm{Ar}] 3 \mathrm{~d}^{6}$ or $3 \mathrm{~d}^{6} 4 \mathrm{~s}^{0}$ in either order, allowing superscripts to be subscripts
Letter d must be lower case
Reject any other letters
(ii)

OR

OR

Instead of dotted line
ALLOW bond to H of $\mathrm{H}_{2} \mathrm{O}$ (accept on left side if OH_{2} is given)
IGNORE charge unless incorrect
(iii) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{OH}^{-} \rightarrow\left[\mathrm{Fe}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]+2 \mathrm{H}_{2} \mathrm{O}$

OR
$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{OH}^{-} \rightarrow \mathrm{Fe}(\mathrm{OH})_{2}+6 \mathrm{H}_{2} \mathrm{O}$
(iv) Green precipitate/solid \rightarrow Foxy-red/red-brown/
brown/orange
Both colours and precipitate/solid needed
(b) (i) QWC

Emf of cell/ potential difference of cell containing Fe (1)
dipping into a $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{Fe}^{2+}$ solution (1)
And standard hydrogen electrode/half cell
OR hydrogen electrode and $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{H}^{+}$and 1 atm H_{2}
OR description of standard hydrogen electrode (1)
IGNORE temperature
Reject'SHE'
(ii) QWC

Emf of hydrogen electrode is zero - stated or implied e.g. if calculate $\mathrm{E}_{\text {cell }}=+0.44 \mathrm{~V}$ (1)

Potential for the reaction is positive so reaction is feasible OR Fe half cell has more negative electrode potential OR H^{+}and $(1 / 2) \mathrm{H}_{2}$ has a more positive electrode potential (1)
$\begin{array}{lll}\text { (iii) } & \text { High } E_{\mathrm{a}} \text { so slow reaction / reactants are kinetically stable } \\ \text { IGNORE any mention of non-standard conditions } & 1\end{array}$

